

Fourth Semester B.E. Degree Examination, June/July 2013 Graph Theory and Combinatorics

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Define isomorphism of graphs. Give an example to show that two graphs need not be isomorphic though they have equal number of edges, equal number of vertices with a given degree.

 (08 Marks)
 - b. Write a note on "Konigsberg-Bridge" problem.

(06 Marks)

- Define the following terms with an examples:
 - i) Spanning subgraph
- ii) Complement of a graph
- iii) Self complementary graph.

(06 Marks)

- 2 a. Show that every simple graph has number of vertices of odd degree is even. (06 Marks)
 - b. Prove that a simple connected graph with n vertices ($n \ge 3$) is Hamiltonian if the degree of every vertex is greater than or equal to n/2. (06 Marks)
 - c. Find the chromatic polynomial for the graph given below:

(08 Marks)

- 3 a. Obtain a prefix code for the message ROAD IS GOOD using labeled binary tree and hence encode the message. (08 Marks)
 - b. Show that the complete graph K_5 is non planar.

(05 Marks)

c. Using the Kruskal's algorithm, find a minimal spanning tree of the weighted graph shown below:

(07 Marks)

- 4 a. Explain Prims algorithm for finding shortest spanning tree of a weighted graph. (06 Marks)
 - b. Show that in any connected planar graph with n vertices, e edges and f faces e n + 2 = f. (08 Marks)
 - c. State and prove "Max flow-Min cost" theorem.

(06 Marks)

PART – B

- 5 Using the principle of inclusion-exclusion, determine the number of positive integers n, where $1 \le n \le 100$ and n is not divisible by 2 or 3 or 5. (08 Marks)
 - Find the coefficient of x^9y^3 in the expansion of $(2x 3y)^{12}$. (06 Marks)
 - A woman has 11 closed relatives and she wishes to invite 5 of them to dinner. In how many way can she invite them in the following situations:
 - There is no restriction on the choice. i)
 - ii) Two particular persons will not attend separately.
 - Two particular parsons will not attend together.

(06 Marks)

- a. Out of 30 students in a hostel, 15 study history 8 study economics and 6 study geography. It 6 is known that 2 student study all three subjects. Show that 7 or more students study none of these subjects.
 - b. Define ordinary generating function and the exponential generating function. Give one example for each.
 - example for each. c. Find the coefficient of X^{18} in the product $(x + x^2 + x^3 + x^4 + x^5)(x^2 + x^3 + x^4 + ...)^5$.

(08 Marks)

Define recurrence relation and give two examples. 7

(04 Marks)

- Solve the recurrence relation $a_n 3a_{n-1} = 5 \times 3^n$, for $n \ge 1$ given that $a_0 = 2$. (08 Marks)
- c. Determine the sequence generated by each of the following exponential generating function:

 - $\frac{6e^{5x} 3e^{2x}}{e^{2x} 3x^3 + 5x^2 7x}.$

(08 Marks)

- Using generating function, find the number of partition of n = 6. (07 Marks)
 - b. Determine the solution for $a_n = 7a_{n-1}$, where $n \ge 1$, given that $a_2 = 98$. (07 Marks)
 - Write the procedure of method of generating functions. (06 Marks)